
www.manaraa.com

Sophisticated crosscuts for e-commerce�

Rémi Douence, Olivier Motelet, Mario Südholt

École des Mines de Nantes

4 rue Alfred Kastler, 44307 Nantes cedex 3, France

Corresponding author: motelet@emn.fr

1 Introduction

AOP [2] introduced the notion of crosscutting concerns in programming. An aspect groups

a crosscut (aka. pointcut in Aspect-J [3]) � which relates several points of interest (aka.

join points) of the base application � with an action (aka. advice) to be performed. This

article argues for a clear separation of crosscut and action de�nitions. The tools for AOP

currently available support only simple crosscut de�nitions, which hinders the separation of

crosscuts and actions. In this paper we advocate that more sophisticated crosscuts can solve

this problem.

This article discusses two aspects in the context of a simple e-commerce application. First,

we present this AOP example using simple crosscut de�nitions only. Then we give an alterna-

tive version where sophisticated crosscut de�nitions enable us to clearly separated crosscuts

and actions. Finally, we brie�y discuss bene�ts of elaborate crosscuts de�nitions in AOP.

2 A simple discount and security aspect for e-commerce

2.1 A basic e-commerce application

In this article, we consider the case of a web-based e-commerce application as a running

example. A customer of such an application navigates inside the shop's web site in search

for interesting products: he goes forward from web pages to other web pages while displaying

items. This navigation is represented in the following by the command search. During his

search, he may also go back to some products that were displayed on previous pages by

performing the back command. The customer can also purchase the displayed products by

issuing the command buy. This last command does not generate a new web page and does

not therefore act on the navigation state. The application allows any combination of these

commands. For the sake of simplicity, we suppose the initial page already displays a selection

of best-seller products to be bought and back has no e�ect on the initial page. In this setting,

a concrete usage scenario could read as follows:

search; buy; search; back; search; buy

�This work has been partially funded by the EU project �EasyComp� (www.easycomp.org), no. IST-

1999014191.

1

www.manaraa.com

This trace means that the customer made a �rst search for a speci�c product and ordered it,

then he performed a second search that he canceled, and he �nally purchased the result of a

third search.

The previous scenario illustrates the base functionality of the e-commerce application. We

are interesting in introducing additional behavior like a discount policy for rewarding repeated

purchases and a security policy based on authentication before payments. Such transverse

features can be implemented as aspects in the sense of AOP.

2.2 AOP from a monitoring perspective

To make the presentation more precise, we present the examples in a framework de�ning

AOP from a monitoring perspective [1]. In this framework, execution monitors serve as an

operational model for AOP. The execution of the base program generates events so that

monitors can survey the execution. Such events could model both the control �ow (e.g.

method/function calls) and the data �ow (e.g. through assignments) of the base program. A

crosscut can then be de�ned as a pattern of events, which are tested for each time an event

is emitted. An aspect can thus be de�ned by grouping in a rule a pattern of events with an

action to be triggered:

aspect = when aPatternOfEvents perform aFunctionCall

This de�nition can be read as: each time the base application performs the execution se-

quences described in aPatternOfEvents, pause the base application execution, call the func-

tion aFunctionCall with eventually some information about matched events, and resume the

base application execution. We presented a prototype for Java implementing this framework

and a DSL for formal crosscut de�nitions in [1].

2.3 Informal de�nition of the discount and security aspects

In the monitor-based framework, the discount policy can be expressed as:
discount = when buy a product

perform apply discount if not first payment

In case of the trace given in Section 2.1, a discount will be applied to the second purchased

product. Similarly, the security policy could be de�ned as:
security = when buy a product perform authenticate the user if not already not done

In this case only the �rst payment of the user requires his authentication. Obviously, in

general the back action can interfere with the security aspect: once the user is back to a page

loaded before the last authentication process, he will have to be authenticated again when

the next purchase occurs. For instance, when performing the following sequence of commands

search; buy; back; search; buy, the user must be authenticated twice.

3 De�ning the aspects using simple crosscuts

Figure 1 de�nes a discount aspect in a Java-like syntax. The aspect de�nes two variables.

The variable firstBuy which is initialized to true is used to identify the �rst occurrence of

the command buy. The variable discountRate keeps track of the incremental discount to

be applied. When a command buy is detected, either it is the �rst occurrence of this event

and no discount is applied but the boolean tag is changed, or the price is reduced using

discountRate.

2

www.manaraa.com

aspect Discount {

boolean firstBuy = true;

float discountRate = 1.0;

when buy perform {

if (firstBuy)

firstBuy = false;

else {

discountRate -= 0.01;

price *= discountRate;

}

}

Figure 1: A discount aspect (version 1)

aspect Security {

boolean authenticated = false;

int afterAuthenticate;

when search perform {

if (authenticated)

afterAuthenticate++;

}

when back perform {

if (authenticated) {

if (afterAuthenticate == 0)

authenticated = false;

else

afterAuthenticate--;

}

}

when buy perform {

if (!authenticated) {

authenticate();

authenticated = true;

afterAuthenticate = 0;

}

}

}

Figure 2: A security aspect (version 1)

3

www.manaraa.com

Similarly, Figure 2 de�nes a security aspect. The boolean variable authenticated speci�es

whether the next command buy requires an authentication. The integer variable after-

Authenticate counts the number of back commands allowed such that the user remains

authenticated.

In these two aspects de�nitions, we can distinguish two pieces of code in the actions

introduced by the keyword perform :

Book-keeping code. This code deals with boolean tags and integer counters. They are used

to express sophisticated crosscutting conditions such as �unless it is the �rst payment�

or �if it (i.e. authentication) was not done before� (see Section 2.3).

Action code. This code performs changes on the base level, i.e., dealing with variables of

the base application (e.g. price) and �real� actions (e.g. authenticate()).

These aspect de�nitions are unsatisfactory because they do not provide a clear separation of

crosscut and action speci�cations.

4 De�ning the aspects based on sophisticated crosscuts

Figure 3 presents another de�nition of the discount aspect in which the crosscut is de�ned

using a event patterns which represent sequences of execution points instead of a single

event as in the previous section. The pattern matching is implemented by the function

enableDiscount(). This function skips the �rst occurrence of the buy event and calls the

function enableDiscount2(). This second function returns a crosscut when the next buy

event occurs. At the same time, it also continue to detect the following occurrences of buy

(i.e. the next crosscuts). These two concurrent tasks (i.e. returning the detected crosscut and

continuing to detect further crosscuts) are implemented with the help of the parallel operator

||| and a recursive call. (These constructions are formally de�ned in [1].) Note that this new

version of the discount aspect does not need a boolean tag in order to distinguish the �rst

occurrence of buy from the following ones. Note also that the action introduced by perform

is not polluted with book-keeping code as is the case in the previous de�nition.

Figure 4 rede�nes the security aspect. In this case, the pattern matching functions

are authRequired() and authRequired2(). The function authRequired2() has an inte-

ger counter as parameter. Note that in this version the action introduced by perform is also

not polluted with book-keeping code simply calls authenticate().

These examples demonstrate that an expressive language for crosscut de�nitions is useful

to obtain a clear separation between crosscut and action de�nitions. This separation makes

the aspect speci�cations easier to understand: the programmer can read crosscuts and actions

separately. The aspect speci�cations are also more reusable since the programmer can modify

crosscuts and actions separately.

5 Discussion

In this article, we presented two di�erent de�nitions of the same aspects. One, discussed

in Section 3, relies on simple crosscuts de�nitions by restricting a crosscut to a single point

of interest and polluting action speci�cations with book-keeping code. The other de�nition,

exempli�ed in Section 4, relies on richer crosscuts de�nitions and speci�es a crosscut as a

4

www.manaraa.com

aspect Discount {

float discountRate = 1.0;

when enableDiscount() perform {

discountRate -= 0.01;

price *= discountRate;

}

Crosscut enableDiscount() {

Event e = nextEvent(buy);

return enableDiscount2();

}

Crosscut enableDiscount2() {

Event e = nextEvent(buy);

{ return new Crosscut(e);

|||

return enableDiscount2();

}

}

}

Figure 3: A discount aspect (version 2)

aspect Security {

when authRequired() perform {

authenticate();

}

Crosscut authRequired() {

Event e = nextEvent(buy);

{ return new Crosscut(e);

|||

return authRequired2(0);

}

}

Crosscut authRequired2(int n) {

Event e = nextEvent();

switch (e) {

case search: return authRequired2(n+1);

case back : if (n == 0) return authRequired();

else return authRequired2(n-1);

}

}

}

Figure 4: A security aspect (version 2)

5

www.manaraa.com

pattern of events denoting sequences of execution points to be matched. Sophisticated crosscut

de�nition provides a clean separation of crosscuts and actions. We argue that this separation

supports the study of aspect interactions.

Study of aspect interactions using sophisticated crosscuts. Aspect interaction is an

important issue of AOP. In our e-commerce scenario, both aspects may interact. For instance,

in the usage scenario search; buy; back; search; buy, both discount and security aspects

crosscut at the second buy. In this case, the two corresponding actions must be carefully

ordered. Indeed, a failed authentication should cancel the discount procedure: the security

action must be executed before the discount action. On the other hand, simple and realistic

restrictions on the application scenario could prevent their interaction: for instance, if each

buy �ushes the web page cache in order to forbid too large a number of back commands, both

aspects can never interact and their order is no more important.

Aspect interaction issues can often be handled as crosscut interaction issues and can be

studied by formally analyzing crosscuts. A clear separation of crosscut and action then allows

to focus the analysis on the sole crosscuts de�nitions.

Perspectives. The tools for AOP currently available do not provide satisfying support for

sophisticated crosscut de�nitions. There are some interesting �rst steps (like AspectJ's

cflow() primitive which avoids polluting the action code with a stack-like crosscutting be-

havior) but they are limited to prede�ned primitives.

In [1], we introduced a crosscut language expressive enough to de�ne sophisticated cross-

cuts and allowing a clear separation of crosscut and action. Its semantics could serve as a

formal base for crosscuts de�nition analysis as we detailed in proving certain crosscut equiva-

lences � a special case of interaction. This topic remains to be studied further to achieve a

general method for the analysis of aspect interaction.

References

[1] R. Douence, O. Motelet, and M. Südholt. A formal de�nition of crosscuts. Technical

Report 01/3/INFO, École des Mines de Nantes, 2001.

[2] G. Kiczales et al. Aspect-oriented programming. In Mehmet Aksit and Satoshi Mat-

suoka, editors, 11th Europeen Conference on Object-Oriented Programming, volume 1241

of LNCS, pages 220�242. Springer Verlag, 1997.

[3] G. Kiczales et al. An overview of AspectJ. In Proceedings of the European Conference on

Object-Oriented Programming (ECOOP), 2001. To appear, preprint version: see AspectJ

home page, www.aspectj.org.

6

